Abstract

The extension of seasonal to interannual prediction of the physical climate system to include the marine ecosystem has a great potential to inform marine resource management strategies. Along the east coast of Africa, recent findings suggest that skillful Earth system model (ESM)-based chlorophyll predictions may enable anticipation of fisheries fluctuations. The mechanisms underlying skillful chlorophyll predictions, however, were not identified, eroding confidence in potential adaptive management steps. This study demonstrates that skillful chlorophyll predictions up to two years in advance arise from the successful simulation of westward-propagating off-equatorial Rossby waves in the Indian ocean. Upwelling associated with these waves supplies nutrients to the surface layer for the large coastal areas by generating north- and southward propagating waves at the east African coast. Further analysis shows that the off-equatorial Rossby wave is initially excited by wind stress forcing caused by El Niño/Southern Oscillation-Indian Ocean teleconnections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.