Abstract

Convectively coupled Kelvin waves (CCKW) are analysed using a cloud-resolving model to gain a better understanding of the mechanisms that initiate and drive these waves. We compare the modelled precipitation and vertical structure of a convectively coupled Kelvin wave to the mechanisms that control precipitation over warm tropical oceans: convective inhibition (CIN), saturation fraction, atmospheric stability and surface moist entropy fluxes. Our results show that the primary onset mechanism for precipitation associated with CCKW is CIN associated with a decrease in the threshold moist entropy. Saturation fraction and atmospheric instability exhibit a time lag in comparison with the rainfall evolution and are, therefore, not primary controls in the onset of these waves. The modelled CCKW evolve by starting with congestus convection, develop into deep convection and decay with the stratiform convection. The results from the presented model agree with observations and linearised models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.