Abstract

We previously showed that fluid flow, which chondrocytes experience in vivo and which results in a variety of morphological and metabolic changes in cultured articular chondrocytes, can also stimulate a rise in intracellular calcium concentration ([Ca2+]i). However, the mechanism by which Ca2+ is mobilized in response to flow is unclear. In this study, we investigated the roles of intracellular Ca2+ stores, G-proteins, and extracellular ATP in the flow-induced Ca2+ response in bovine articular chondrocytes (BAC). Cells loaded with the Ca2+ sensitive dye Fura-2 were exposed to steady flow at 34 ml/min (37 dynes/cm2) in a parallel plate flow chamber. Whereas ryanodine and caffeine had no effect, both neomycin and thapsigargin significantly decreased the Ca2+(i) response to flow, suggesting a role for Ca2+ store release, possibly through an inositol 1,4,5-trisphosphate (IP3)-dependent mechanism. Twenty-four-hour treatment with pertussis toxin also significantly decreased the response, suggesting that the mechanism may be G-protein regulated. In addition, ATP release by chondrocytes does not appear to mediate the flow-induced Ca2+ response because suramin, a P2 purinergic blocker, had no effect. These results suggest that BAC respond rapidly to changes in their mechanical environment, such as increased fluid flow, by a mechanism that involves IP3 stimulated Ca2+(i) release and G-protein activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.