Abstract

Alternative vegetation types that switch from one to another under contrasting fire regimes are termed fire-mediated alternative stable states (FMASS). Typically, pyrophylic communities (i.e., vegetation assemblages favored by burning) dominate under high frequencies or intensities of fire. Conversely, fire-sensitive (pyrophobic) vegetation types persist under long fire-free conditions. As the persistence traits of plants of FMASS systems are generally poorly researched, threshold levels of pyric disturbance that trigger 'state-switching' are often unknown. Dense thickets of the obligate-seeder shrub waputi (Aluta maisonneuvei ssp. maisonneuvei [Myrtaceae]) form fire-retarding woody islands within highly flammable spinifex (Triodia spp.) grasslands in arid Australia. To examine the tolerance of Aluta thickets to burning, we investigated: (1) the influence of post-fire rainfall and fire severity on recruitment (a field study); (2) soil seedbank densities (a field study); and (3) fire-related dormancy cues in seeds (a germination trial). We found a positive relationship between recruitment and post-fire rainfall volume, and much higher mean recruitment at sites with high- (5.9 seedlings/m2) than low-severity-burnt (2.2 seedlings/m2) and unburnt shrubs (0.03 seedlings/m2). Post-fire regeneration was mediated by dense soil-borne seedbanks, and the germination trial indicated that smoke promoted germination. Although Aluta shrubs are invariably fire-killed, high-severity fires are unlikely to lead to state shifts from shrubland to grassland because of the ability of mature stands to regenerate from dense, fire-cued seedbanks. Nevertheless, given that Aluta seedlings are exceptionally slow-growing, post-fire droughts combined with fire-return intervals less than the Aluta primary juvenile period of c. 5years could drive conversion from Aluta- to Triodia-dominated vegetation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.