Abstract

Here, 3,4-dimethylaniline (3,4-DMA) was selected as a representative organic substance of aniline compounds. A biochar-titanium dioxide (BC-TiO2) composite was prepared by the sol–gel method to investigate its adsorption ability toward the 3,4-DMA compound. Simultaneously, the prepared composite’s adsorption ability and physical and physicochemical properties were also investigated. The isotherm studies confirmed that the adsorption of 3,4-DMA on both BC and BC-TiO2 composite agrees with the Langmuir and Toth adsorption models, which means the formation of a monolayer of 3,4-DMA on the surface. The maximum adsorption capacity of 3,4-DMA was 322.58 mg g–1 and 285.71mg g–1 for BC and BC-TiO2, respectively. Furthermore, the adsorption kinetics reveals that the adsorption process of 3,4-DMA on BC and the BC-TiO2 composite is controlled by the pseudo-second-order kinetic model with an R2 of 0.99.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.