Abstract

Ozonolysis of unsaturated ketones is a common atmospheric chemical process that plays a significant role in controlling the atmospheric budget of OH and O3, organic acids, and secondary organic aerosols (SOA). In this work, the detailed reaction mechanism and rate coefficients for the reactions of O3 with two unsaturated ketones, 3-methyl-3-buten-2-one (MBO332) and 3-methyl-3-penten-2-one (MPO332), were investigated by using density functional theory (DFT) and Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The results indicate that the major products are butanedione and formaldehyde for MBO332, and butanedione and acetaldehyde for MPO332. Possible reaction mechanism and thermodynamic parameters of some complex stable Criegee intermediates (SCIs) RR'COO were also be investigated in this study. Some organic peroxides can be regarded as the main products for the further reactions of SCIs. The rate constants calculated with O3 are 2.59 × 10-16 cm3 molecule-1 s-1 and 2.28 × 10-16 cm3 molecule-1 s-1 for MBO332 and MPO332 at 298 K and 1 atm. The total rate constant is negatively correlated with temperature (200-400 K) and positively correlated with pressure. The atmospheric half-lives of MBO332 and MPO332 based on O3 are estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.