Abstract

Peroxymonosulfate (PMS) based advanced oxidation processes have gained widespread attention in refractory antibiotics treatment. In this study, Fe3O4 nanoparticles anchored nitrogen-doped porous carbon microspheres (Fe3O4/NCMS) were synthesized and applied to PMS heterogeneous activation for doxycycline hydrochloride (DOX-H) degradation. Benefitting from synergy effects of porous carbon structure, nitrogen doping, and fine dispersion of Fe3O4 nanoparticles, Fe3O4/NCMS showed excellent DOX-H degradation efficiency within 20 min via PMS activation. Further reaction mechanisms revealed that the reactive oxygen species including hydroxyl radicals (•OH) and singlet oxygen (1O2) played the dominant role for DOX-H degradation. Moreover, Fe(II)/Fe(III) redox cycle also participated in the radical generation, and nitrogen-doped carbonaceous structures served as the highly active centers for non-radical pathways. The possible degradation pathways and intermediate products accompanying DOX-H degradation were also analyzed in detail. This study provides key insights into the further development of heterogeneous metallic oxides-carbon catalysts for antibiotic-containing wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.