Abstract
Nitrite (NO2-), one of the main substrates in the anaerobic ammonium oxidation (anammox) process, has the potential to inhibit anammox bacteria. The sensitivity of anammox cells with different energy status to NO2- was evaluated, and addition of nitrate (NO3-) inhibition on the basis of narK gene with the putative function of facilitating NO3-/NO2- antiporter. The results showed that the resistance of anammox bacteria to NO2- inhibition follows the order: active-cells > starved-cells > resting-cells > starved-/resting-cells. Anammmox resting cells have increasing tolerance to NO2- in the pH range from 7.0 to 7.5. Dissipating the proton gradient by using carbonyl cyanide m-chlorophenyl hydrazine (CCCP) caused severe inhibition at all pH values including pH = 7.5. Addition of NO3- enabled activity recovery of NO2--inhibited anammox bacteria regardless of whether the proton gradient was disrupted or not, supporting the hypothesis of NO3--dependent detoxification via a secondary transport system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water environment research : a research publication of the Water Environment Federation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.