Abstract

Background In mammals, the ability to sense and respond to both intracellular and extracellular nutrient levels requires the integration and cooperation of multiple complex metabolic regulatory networks. Key among these are the mTOR and AMPK signaling pathways, which are activated in response to increased or decreased cellular energy levels, respectively. These pathways control cell growth, proliferation, metabolism and autophagy, and their dysregulation has been associated with both cancer and metabolic disease. The anti-diabetes drug metformin has been shown to function, at least in part, through activation of AMPK, however it also inhibits mTORC1 signaling, suggesting a potential role for mTORC1 inhibition in the beneficial effects of metformin. AMPK can suppress mTORC1 through activation of the TSC complex, an inhibitor of mTORC1, or inhibition of Raptor, an essential component of mTORC1. The liver plays a critical role in the maintenance of systemic metabolic homeostasis, and is thought to be the major target organ for the physiological effects of metformin, thus we are investigating the hepatic regulation of mTORC1 by metformin. Materials and methods The effects of metformin on mTORC1 were assessed in livers and primary hepatocytes from LTSC1KO mice that have conditional loss of TSC1 in the liver. mTORC1 activity was determined by analysis of the phosphorylation state of its targets, and the rate of protein synthesis using 35S-methionine incorporation. Physiological effects of metformin were determined using glucose and metformin tolerance tests. Results

Highlights

  • In mammals, the ability to sense and respond to both intracellular and extracellular nutrient levels requires the integration and cooperation of multiple complex metabolic regulatory networks

  • Materials and methods The effects of metformin on mTORC1 were assessed in livers and primary hepatocytes from LTSC1KO mice that have conditional loss of TSC1 in the liver. mTORC1 activity was determined by analysis of the phosphorylation state of its targets, and the rate of protein synthesis using 35S-methionine incorporation

  • The rate of protein synthesis is maintained at a higher level in these hepatocytes

Read more

Summary

Background

The ability to sense and respond to both intracellular and extracellular nutrient levels requires the integration and cooperation of multiple complex metabolic regulatory networks. Key among these are the mTOR and AMPK signaling pathways, which are activated in response to increased or decreased cellular energy levels, respectively. These pathways control cell growth, proliferation, metabolism and autophagy, and their dysregulation has been associated with both cancer and metabolic disease. The liver plays a critical role in the maintenance of systemic metabolic homeostasis, and is thought to be the major target organ for the physiological effects of metformin, we are investigating the hepatic regulation of mTORC1 by metformin

Materials and methods
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.