Abstract

Selective Laser Melting (SLM) is a powder bed based technology to fabricate metal parts through laser melting, it provides excellent mechanical properties and freedom. The authors study the influence of laser energy on spattering, the investigation analyzed the formation principle, appearance and compositions of spattering. Results indicate that as the laser energy input increases from 0.32×105W/cm3 to 1.30×105W/cm3, the intensity and the quantity of spattering increases, the metal liquid jetted out even reach to the height of 11cm. Major sources of spattering included three types, which were mainly caused by recoil pressure, Marangoni effect and heat effect in molten pool, these three different sources of spattering leading to three types of spattering morphology correspondingly. The solidified spattering particles have an average size of approximately 162μm, much larger than the original powder size of 32μm, and these spatter particles present various appearances. The compositions of spattering powers are almost the same as the original powders, but the contents of O, Si and C increase dramatically. The spattering particles are embedded into the surface and interior of the SLM-fabricated parts. These results are helpful in controlling the intensity of spattering, improving stability and repeatability of the SLM fabrication process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.