Abstract
ABSTRACTBiaxial compressive experiments for 3D needled C/C–SiC composites parallel to the nonwoven cloth were conducted. The failure mechanisms and mechanical properties of the composites were greatly related to the biaxial compressive stress confinement ratio, R. It was found that out-of-plane shear failure controlled the failure of the composites. The failure shear plane was aligned with one of the major loading axes for R (0:1 or 1:3), while the failure shear plane occurred along both loading axes for R (1:2 or 1:1). Compared with uniaxial strength, the biaxial compressive strength increased obviously, which also significantly depended on the value of R. Based on the failure modes, a modified twin-shear strength criterion was established to predict the failure surface of 3D needled C/C–SiC composites under biaxial compressive loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.