Abstract

Influences of genetic and nutritional factors on body weight, fat mass, and leptin production and effects of leptin were assessed in normal [Wistar-Kyoto (WKY)] and diabetic [Goto-Kakizaki (GK)] rats by mechanism-based modeling. The study included 60 WKY and 60 GK rats; half received high-fat diet (HF), and the others received normal rat chow (N). Body weights and food consumption were measured twice weekly. Six rats per group were sacrificed at 4, 8, 12, 16, and 20 weeks. Abdominal fat was weighed, and plasma leptin was measured by enzyme-linked immunosorbent assay. All data were comodeled using NONMEM version VI level 1.1 (first-order conditional estimation with interaction) (Beal SL, Boeckmann AJ, Sheiner LB, and NONMEM Project Group, NONMEM Users Guides, University of California, San Francisco, CA, 2007). Weight gain was modeled as differences between energy intake and metabolic rate based on allometrically scaled lean body mass (LBM). The GK had higher metabolic rates (1.15 kcal/day/g LBM(0.75)) than WKY-N (0.92) and WKY-HF (1.02) rats and higher efficiency in transforming energy into body weight. Leptin effect was modeled as inhibition of food consumption. Total body fat was estimated from abdominal fat. Leptin production from fat was 4.7-fold higher for GK (3.03 ng/ml/day/g) than WKY (0.66 ng/ml/day/g). Leptin production rate from LBM was 0.53 ng/ml/day/g for all groups. The IC(50) for inhibition of food intake by leptin was approximately 3-fold higher in GK versus WKY, indicating leptin resistance for the effect on food consumption in GK. The GK had similar intake of kilocalories but lower body weights and fat mass than WKY, possibly because of higher metabolic rates. Our mechanism-based model explains intrinsic reasons for differences in growth, food intake, and leptin concentrations among these two strains of rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.