Abstract
Organophosphates (OPs) inhibit cholinesterase and hyperactivate the acetylcholinergic nervous system in the brain, causing motor disorders (e.g., tremor and seizures). Here, we performed behavioral and immunohistochemical studies in mice and rats to investigate the tremorgenic mechanism of paraoxon, an active metabolite of parathion. Treating animals with paraoxon (0.15-0.6mg/kg, i.p.) elicited kinetic tremor in a dose-dependent manner. Expressional analysis of Fos protein, a biomarker of neural excitation, revealed that a tremorgenic dose of paraoxon (0.6mg/kg) significantly and region-specifically elevated Fos expression in the cerebral cortex (e.g., sensory cortex), hippocampal CA1, globus pallidus, medial habenula, and inferior olive (IO) among 48 brain regions examined. A moderate increase in Fos expression was also observed in the dorsolateral striatum while the change was not statistically significant. Paraoxon-induced tremor was inhibited by the nicotinic acetylcholine (nACh) receptor antagonist mecamylamine (MEC), but not affected by the muscarinic acetylcholine receptor antagonist trihexyphenidyl (THP). In addition, paraoxon-induced Fos expression in the IO was also antagonized by MEC, but not by THP, and lesioning of the IO markedly suppressed tremorgenic action of paraoxon. The present results suggest that OPs elicit kinetic tremor at least partly by activating IO neurons via nACh receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.