Abstract

This study aimed to fabricate a novel codelivery system to simultaneously load β-carotene and curcumin in a controlled and synergistic manner. We hypothesized that the aggregates of octenylsuccinated Gastrodia elata starch (OSGES) could efficiently load and control the release of β-carotene and curcumin in combination. Mechanisms underlying the self-assembly of OSGES, coloading, and corelease of β-carotene and curcumin by relevant aggregates were studied. The OSGES could form aggregates with a size of 120.2 nm containing hydrophobic domains surrounded by hydrophilic domains. For coloading, the increased solubilities were attributed to favorable interactions between β-carotene and curcumin as well as interactions with octenyl and starch moieties via hydrophobic and hydrogen-bond interactions, respectively. The β-carotene and curcumin molecules occupied the interior and periphery of hydrophobic domains of OSGES aggregates, respectively, and they did not exist in isolation but interacted with each other. The β-carotene and curcumin combination-loaded OSGES aggregates with a size of 310.5 nm presented a more compact structure than β-carotene-only and curcumin-only loaded OSGES aggregates with sizes of 463.5 and 202.9 nm respectively, suggesting that a transition from a loose cluster to a compact cluster was accompanied by coloading. During in vitro digestion, the joint effect of β-carotene and curcumin prolonged their release and increased their bioaccessibility due to competition between favorable hydrophobic and hydrogen-bond interactions and the unfavorable structure erosion and relaxation of the loaded aggregates. Therefore, OSGES aggregates were designed for the codelivery of β-carotene and curcumin, indicating their potential to be applied in functional foods and dietary supplements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.