Abstract

Amino acids are essential organic compounds in composting products. However, the mechanism underlying the amino acid metabolism during composting remains unclear. This study aims at exploring the impacts of inoculating cellulose-degrading microbes on amino acid metabolism during composting with mulberry branches and silkworm excrements. Cellulose-degrading microbial inoculation enhanced amino acid degradation by 18%–43% by increasing protease and sucrase activities and stimulating eight amino acid degradation pathways from the initial to thermophilic phases, with Enterococcus, Saccharomonospora, Corynebacterium being the dominant bacterial genera, but stimulated amino acid production by 54% by increasing sucrase and urease activities, decreasing β-glucosidase activities, and stimulating twenty-two amino acid synthesis pathways at the mature phase, with Thermobifida, Devosia, and Cellulosimicrobium being the dominant bacterial genera. The results suggest that cellulose-degrading microbial inoculation enhances amino acid degradation from the initial to thermophilic phases and biosynthesis at the mature phase, thereby improving the quality of organic fertilizer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.