Abstract

The carbon coating strategy is intensively used in the modification of conversion-type anode materials to improve their cycling stability and rate capability. Thus, it is necessary to elucidate the modification mechanism induced by carbon coating. For this purpose, bare ZnMn2O4, carbon-derivative-coated ZnMn2O4, and carbon-coated ZnO-MnO composite materials have been synthesized and investigated in-depth. Herein, high-temperature synchrotron radiation diffraction is used to monitor the phase transition from ZnMn2O4 to ZnO-MnO composite during the carbonization process. The electrochemical performance has been evaluated by cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The carbon- and carbon-derivative-coated samples display well-improved cycling stability in terms of suppressed electrode polarization, a moderate increase in resistance, and slight capacity variation. The influence of carbon coating on the intrinsic conversion process is investigated by ex situ X-ray absorption spectroscopy, which reveals the evolution of Zn and Mn oxidation states. This result confirms that the strong capacity variation of the bare ZnMn2O4 is induced not only by the reversible charge storage in the solid electrolyte interphase but also by the phase evolution of active materials. Carbon coating is an effective method to prevent the additional oxidation of MnO to Mn3O4, which leads to a stabilization of the main conversion reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call