Abstract

The further interaction mechanism towards renin inhibitors was revealed by comparison of renin with different active inhibitors in aqueous solution. Molecular docking and molecular dynamics (MD) simulations were combined for the research. The results reflected that electrostatic and hydrophobic effects were the major interactions for renin inhibitors forming complexes with renin, and some residues were the key to the formation of complex, especially Asp38/Asp226. The factor of different activities performed in renin inhibitors was illustrated as well. For the higher active renin inhibitor, it possessed stronger affinity with renin, and its detected conformation was more extended to fit for the key binding site. This promoted the capacity to form special interactions with the key residues. While conformation of the lower active renin inhibitor performed folded in the active site of renin, the interactions to the important pocket S3sp was restricted, resulting in undesirable bioactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.