Abstract

The five-link parallel mechanism is proposed to improve joint bionic performance, and the kinematics is established for the closed chain joint actuated by two antagonistic artificial pneumatic muscles (PMs). Interference and singularity constraints are analyzed, and the joint torque model is given based on the spring-damp dynamics. Through extracting the spring force term from torque equations, the compliance of bionic joint is derived and expressed as the ratio of angle to spring torque. Energy consumption is analyzed using the PM length varying. Based on MATLAB/SimMechanics, the relationships between the axil installation parameters and swing performances are illustrated through the simulations, including the effect of the installation height and width varying on the angle scope, swing response, compliance, and energy consumption. The bionic shoulder and elbow joints are optimally designed. Compared to the conventional joints, the swing angular range of the proposed joints is enhanced, and the contraction amount of PMs is reduced. The optimal mechanism is more humanoid.

Highlights

  • The bionic joint is one of the keys of the manipulator developed to help labor working in the unstructured environment

  • The maximum pretension rate of pneumatic muscles (PMs) produced by FESTO is about 2%

  • The contraction of two antagonistic PMs can be reduced about 7% during the same swing scope

Read more

Summary

Introduction

The bionic joint is one of the keys of the manipulator developed to help labor working in the unstructured environment. Lightweight, anthropopathy swing trajectory, and compliance are the main performance indices for bionic design. High flexibility of the artificial pneumatic muscle (PM) actuators can make manipulator joints more anthropopathy [1,2,3,4]. A pair of antagonistic parallel installation PMs is necessary for actuating joint due to the PM only outputting unidirectional force like cable-driven system [5]. Sekine designed a PM driven parallel link mechanism to get the 2DOF (degree of freedom) shoulder, in which stability is bad and computing and control are complicated [6]. One DOF PM driven joint is practical currently

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.