Abstract

The development of heterogeneous catalysts with well-defined uniform isolated or multiple active sites is of great importance for understanding catalytic performances and studying reaction mechanisms. Herein, we present a CoCu dual-atom catalyst (CoCu-DAC) where bonded Co–Cu dual-atom sites are embedded in N-doped carbon matrix with a well-defined Co(OH)CuN6 structure. The CoCu-DAC exhibits higher catalytic activity and selectivity than the Co single-atom catalyst (Co-SAC) and Cu single-atom catalyst (Cu-SAC) counterparts in the catalytic oxidative esterification of alcohols and a variety of methyl and alkyl esters have been successfully synthesized. Kinetic studies reveal that the activation energy (29.7 kJ mol−1) over CoCu-DAC is much lower than that over Co-SAC (38.4 kJ mol−1) and density functional theory (DFT) studies disclose that two different mechanisms are regulated over CoCu-DAC and Co-SAC/Cu-SAC in three-step esterification of alcohols. The bonded Co–Cu and adjacent N species efficiently catalyze the elementary reactions of alcohol dehydrogenation, O2 activation and ester formation, respectively. The stepwise alkoxy pathway (O–H and C–H scissions) is preferred for both alcohol dehydrogenation and ester formation over CoCu-DAC, while the progressive hydroxylalkyl pathway (C–H and O–H scissions) for alcohol dehydrogenation and simultaneous hemiacetal dehydrogenation are favored over Co-SAC and Cu-SAC. Characteristic peaks in the Fourier transform infrared spectroscopy analysis may confirm the formation of the metal-C intermediate and the hydroxylalkyl pathway over Co-SAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.