Abstract

This work aims to study the mechanism of heavy metals vaporization by MgCl2⋅6H2O. Firstly, the decomposition mechanism of MgCl2⋅6H2O was investigated by thermodynamic equilibrium calculations, XRD and TG. Upon heating, MgCl2⋅6H2O went through the processes of dehydration and hydrolysis simultaneously accompanied by the release of HCl between 150 and 500°C. At temperature higher than 500°C, Mg(OH)Cl gradually release part of HCl. MgCl2⋅6H2O followed the similar processes of decomposition at both oxidative and reductive atmospheres. In oxidative atmosphere, vaporization of Zn and Cu was significantly accelerated by MgCl2⋅6H2O. However, in inert atmosphere, vaporization of Cu was not promoted since copper chloride was only stable in oxidative atmosphere. Under slow heating condition, vaporization of heavy metals were close to that under fast heating condition. This may be partially attributed to that most heavy metals already reacted with HCl forming metal chlorides below 500°C, which can be vaporized at higher temperature. Moreover, the Mg(OH)Cl contributed to release HCl up to 800°C. At such high temperature, the metal chlorides continue to be formed and then vaporized. After treatment, the leaching concentration of heavy metals from treated fly ashes were much lower than that from raw fly ash and met the regulatory limit of leachate. Since a large amount of MgSiO3 were formed during thermal treatment, the fly ash treated with MgCl2⋅6H2O can be used as raw materials for glass–ceramics production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call