Abstract

There is little research on the visible light photocatalytic properties of the hybrids of plasmonic metals and organic molecules (OM) with the HOMO-LUMO gap in the visible range. Here, we investigate the mechanism of the visible light enhanced reduction of p-nitrophenol (PNP) by glycerol (a green reductant) at ambient temperature over curcumin functionalized Ag nanoparticles (c-AgNPs). The catalytic activity got significantly boosted under visible light irradiation. Reaction kinetics indicated that the catalytic mechanism followed under visible light and in the dark were different. DFT calculations showed that in the ground state, the HOMO resides on Ag while the LUMO is on the curcumin part of the composite. TD-DFT calculations demonstrated the transfer of charge from Ag to curcumin on photo-excitation. Based on this information, we propose a mechanism for understanding the role of curcumin in this photocatalytic phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.