Abstract

AbstractAn overall mechanistic scheme for the suspension polymerization of vinyl chloride is presented. The process can be resolved into five discrete stages, each of which presents a unique environment for the interaction of the systems parameters. It is shown that the surface area of the polymer formed during the reaction is not a major factor in autoacceleration and that the increase of kinetic chain length with conversion is due to a radical dilution effect. The latter is a direct result of the difference in rates between polymerization and radical formation, the former being greater. The increase of the initial polymerization rate and the reduction of autoacceleration brought about by chain transfer agents can be explained by the lower diffusion rate and greater bulkiness of the chain transfer agent radical relative to that of the monomer radical. The chaintransfer agent CBr4 is preferentially absorbed by PVC from solution in vinyl chloride. With lauryl peroxide as initiator it is shown that the “hot spot” is the result of a build‐up of initiator in the monomer caused by its exclusion from the polymer phase. Vinyl chloride was found to dissolve 0.03% PVC at ambient temperature and to have no effect on the decomposition rate of lauryl peroxide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call