Abstract

Cystatins essentially regulate lysosomal cysteine protease besides affecting several physiological processes. In the present study, denaturation of a high molecular weight cystatin (Mr 66.4 kDa) purified from goat lung (GLC-I) has been studied by monitoring its inhibitory activity, intrinsic fluorescence, circular dichroism (CD), and binding of ANS. It was found that increasing concentration of GdnHCl significantly enhances the inactivation and unfolding of the purified inhibitor (GLC-I) with complete loss of inhibitory activity at 4 M GdnHCl. Denaturation of GLC-I in the presence of GdnHCl is accompanied by red shift (15 nm) of the emission maximum as shown by intrinsic fluorescence. The inhibitory activity of GLC-I was increased by 1.5 fold at 2 M urea; however, it decreased with further increased of the urea concentration. Intrinsic fluorescence studies of GLC-I in the presence of 0–3 M urea shows blue shift of 5 nm, suggesting stabilization of the inhibitor followed by 5 nm red shift at higher concentration. ANS binding studies in the presence of urea indicate significant changes in the tertiary structure of the inhibitor. Thus, our result shows denaturation profile of GLC-I following simple two state transitions in the presence of GdnHCl while it proceeds through an intermediate state in the presence of urea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.