Abstract

Lithium oxide is a possible candidate for a breeder blanket material in fusion reactors. Tritium is generated in the material, which can be extracted and fed into the fusion reactor to help sustain the fusion reaction. Experimental studies have shown the extraction rate is controlled by diffusion of tritium in the bulk, but the exact mechanism is not clear. Here we present ab initio density functional calculations of the various diffusion pathways which have been suggested, including the diffusion of tritium as an interstitial and various vacancy assisted mechanisms. The activation energy has been calculated for each pathway, and by comparison with experimental results we have deduced which mechanism is most likely. This is shown to be a simple two-stage swapping of a lithium and tritium ion. \textcopyright{} 1996 The American Physical Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.