Abstract

Boundary-layer receptivity is always a hot issue in laminar-turbulent transition. Most actual laminar-turbulent transitions belong to three-dimensional flows. An infinite back-swept flat-plate boundary layer is a typical three-dimensional flow. Study of its receptivity is important both in theory and applications. In this paper, a freestream turbulence model is established. A modified fourth-order Runge-Kutta scheme is used for time marching, and compact finite difference schemes are used for space discretization. On these bases, whether unsteady cross-flow vortices can be excited in the three-dimensional boundary layer (the infinite back-swept flat-plate boundary layer) by free-stream turbulence is studied numerically. If so, effects of the level and the direction of free-stream turbulence on the three-dimensional boundary-layer receptivity are further studied. Differences of the three-dimensional boundary-layer receptivity are then discussed by considering the non-parallel effect, influence of the leading-edge stagnation point of the flat plate, and variation of the back-swept angle separately. Intensive studies on the three-dimensional boundary-layer receptivity will benefit the development of the hydrodynamic stability theory, and provide a theoretical basis for prediction and control of laminar-turbulent transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.