Abstract

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. However, reflection symmetry is only weakly broken with the addition of multiple layers, and out-of-plane acoustic phonons still dominate thermal conductivity. We also find that reduction in thermal conductivity is mainly caused by lower contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. The results compare remarkably well over the entire temperature range with measurements of graphene and graphite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.