Abstract

Density functional calculations have been carried out to model various pathways for F/Ph exchange in [RhF(PPh3)3]. Calculations on the full experimental system showed this process to occur via a novel pathway involving initial attack of fluoride on phosphine. This results in the formation of a metallophosphorane intermediate featuring a 5-coordinate phosphorus center. From this species P−Ph activation is very facile and leads to the F/Ph-exchanged product, cis-[RhPh(PPh3)2(PFPh2)]. The computed activation energy of 22.3 kcal/mol is in excellent agreement with the experimental value. Alternative pathways based on initial Ph group transfer are significantly higher in energy. A key factor favoring the metallophosphorane route is the reduction in coordination number at the metal center that occurs in the initial fluoride transfer step; in contrast Ph group transfer creates a more sterically encumbered metal center. The metallophosphorane pathway indicates that “hard” donor species such as fluoride can induce facile P−C bond activation. This novel mechanism of phosphine ligand disruption may have general significance for the stability of transition metal−phosphine complexes in the presence of such species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.