Abstract

We examined the ability of mifepristone to reverse the in vitro drug resistance of human cervical cancer cells resistant to mitomycin-C (HeLa/MMC) cells and investigated the mechanism of this effect. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the drug resistance of HeLa/MMC cells and the reversed drug resistance in vitro. Expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and glucosylceramide synthase (GCS) were measured in HeLa and HeLa/MMC cells. The resistance index of HeLa/MMC cells on MMC was reduced from 5.02 to 1.46 after 10 mg/mL mifepristone exposure. A combination of mifepristone upregulated the Bax/Bcl-2 protein expression ratio and apoptosis in HeLa/MMC cells. GCS expression was significantly higher in HeLa/MMC cells than in HeLa cells (P < 0.01), but distinctly declined in both cell lines after mifepristone application (P < 0.01). Mifepristone reversed the resistance of HeLa/MMC cells to MMC in vitro; the overexpression of the GCS gene and the increased expression of apoptosis-related protein Bcl-2 may play important roles in the formation of multidrug resistance in cervical cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call