Abstract

In aqueous solutions of strong acids (H2SO4, H3PO4, and HCl) containing azulene, the fast reversible protonation of azulene is accompanied by the slow formation of a disperse dark violet dye insoluble in acids, alcohol, and heptane. On the basis of the kinetic specifics of this reaction and the nonlinear (nearly reciprocal quadratic) dependence of the concentrations ratio of their cationic and neutral forms on the Hammett acidity function known for azulene and 14 of its derivatives, azulene is shown not to be a Hammett base. A mechanism for the reversible reactions of the azulenium cation is proposed that considers supramolecular dimers to be the basic state of azulene and its derivatives. The scheme includes reactions of the unstable intermediate π complexes formed from the dimers and hydrated hydrogen cations; the complexes quickly dissociate in the opposite direction and react with the hydrated protons to yield azulenium cations and unstable molecules that induce polymerization of the dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.