Abstract

Zinc bis(chelate) guanidine complexes promote living lactide polymerization at elevated temperatures. By means of kinetic and spectroscopic analyses the mechanism has been elucidated for these special initiators that make use of neutral N-donor ligands. The neutral guanidine function initiates the polymerization by a nucleophilic ring-opening attack on the lactide molecule. DFT calculations on the first ring-opening step show that the guanidine is able to act as a nucleophile. Three transition states were located for ligand rearrangement, nucleophilic attack, and ring-opening. The second ring-opening step was modeled as a representation for the chain growth because here, the lactate alcoholate opens the second lactide molecule via two transition states (nucleophilic attack and ring-opening). Additionally, the resulting reaction profile proceeds overall exothermically, which is the driving force for the reaction. The experimental and calculated data are in good agreement and the presented mechanism explains why the polymerization proceeds without co-initiators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.