Abstract

The H+O3 reaction has played an important role in the evolution of modern chemical kinetics. Here certain aspects of the HO3 potential energy hypersurface have been investigated using nonempirical molecular electronic structure theory. For the qualitative purposes of the present study, most wave functions were of the self-consistent-field (SCF) variety, constructed from a double zeta basis set of contracted Gaussian functions. Two low energy pathways were established for the reaction. The first involves a coplanar transition state with a nearly linear H–O–O arrangement. The second possible mechanism allows the hydrogen atom to descend perpendicularly upon the ozone molecule. The two mechanisms are evaluated in light of the current experimental understanding of the H+O3 reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.