Abstract

Most probable paths of the classical Grignard reaction between ethyl bromide and Mg31 cluster simulating the reaction center on the surface of metallic magnesium were analyzed in terms of the density functional theory [B3PW91/6-31G(d)]. Principal thermodynamic parameters of the radical reaction path, including the energy of adsorption of oxidant molecules on the cluster, the energy of formation of ethyl radicals, and the energy of their subsequent interaction with the surface, were calculated. The structure corresponding to the true transition state of the Grignard reaction was identified. The low energy of activation of the reaction occurring at the phase boundary (5.1 kcal/mol) indicated that the surface reaction of radical formation cannot be rate-determining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.