Abstract

The high coercivity of Nd–Fe–B magnets can also be obtained in the Ce–Fe–B magnets fabricated via the dual-main-phase (DMP) method in which the high abundance Ce was used to substitute Nd(Pr). The inhomogeneous distributions of the matrix grains in the DMP magnet play a key role in the enhanced magnetic performance. Compared with the single-phase magnet, more grain boundary phases encapsulating the matrix 2:14:1 grain are formed in the DMP magnet, which reduce the exchange coupling between adjacent magnetic grains. The switching field distribution and the interaction field distribution of the Ce–Fe–B magnets were determined by the first-order-reversal curves (FORC). The switching field peaks around 6 kOe, 11 kOe and 12 kOe in the FORC distribution indicate that three major reversal components coexist for the DMP magnet. The overlapp of the second and third switching field peaks reveals the presence of a pinning interaction within individual magnetic grains with a core–shell structure, which further improve the coercivity of the magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call