Abstract

The mechanism of the electrochemical carboxylation of several benzophenones (X-C6H4COC6H5; X = 4-OCH3, 4-CH3, H, 3-Cl, 3-CF3, 4-CF3 and 4-CN) and several ring-substituted acetophenones (Y-C6H4COCH3; Y = 4-OCH3, H, 3-OCH3, 3-Cl, 3-CF3, 4-CF3, 3-CN and 4-CN) has been investigated by cyclic voltammetry in dimethylformamide. In the presence of CO2, all compounds exhibit a single irreversible peak representing a 2 e reduction process. The reaction mechanism has been analysed using the dependence of the peak potential Ep on various experimental parameters such as the concentrations of the reactant, the scan rate and the temperature. Also the kinetics of the electrocarboxylation reaction has been examined. The whole set of results has been carefully analysed in the framework of an ECE-DISP mechanism. It has been found that, under the conditions employed, the electrocarboxylation reaction is always under a mixed ECE-DISP1 kinetic control. The first step of the reaction is an attack, via the oxygen atom, of the electrogenerated ketyl radical anion RR'CO•- at CO2. Further reduction of the carbonate-like adduct arising by such an attack followed by a second carboxylation reaction gives an arene-2-carboxylic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.