Abstract

A dynamical mechanism of the generation of qualitatively different neural responses to typical excitatory stimuli such as an applied current or AMPA and NMDA synaptic currents has been presented. The mechanism is based on a nonlinearity simulating the calcium-dependent potassium current. It has been shown with the FitzHugh-Nagumo equation that, in the presence of such a nonlinearity, only the NMDA synaptic current can strongly increase the frequency of self-sustained oscillations, whereas other stimuli suppress neural activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.