Abstract
The mechanism of the chlorine evolution on titanium electrodes coated with a layer of ruthenium oxide and titanium oxide under different experimental conditions, and on a ruthenium electrode, both in acidic chloride solution, has been investigated. Potentiodynamic current density—potential curves were recorded as a function of the time anodic pre-polarisation, the composition of the solution and the temperature. Moreover, potential decay curves were determined. Theoretical potential decay curves were deduced for both the Tafel reaction (2 Cl ad→Cl 2) and the Heyrovsky reaction (Cl − + Cl ad → Cl 2 + e −) as a rate determining step in the formation of molecular chlorine. They were compared with those found experimentally. The influence of possible diffusion of atomic chlorine out of the electrode was also taken into consideration. It was found that for all the electrodes investigated, molecular chlorine is formed both at anodic polarisation and on open circuit according to the Volmer—Heyrovsky mechanism, where the Heyrovsky reaction is the rate-determining step. The transfer coefficient is 0.5 for the chlorine evolution at an “ideal” ruthenium oxide titanium oxide electrode and at a ruthenium electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.