Abstract

The C-terminal domain of the bacterial transcription antiterminator RfaH undergoes a dramatic all-α-helix to all-β-barrel transition when released from its N-terminal domain. These two distinct folding patterns correspond to different functions: the all-α state acts as an essential regulator of transcription to ensure RNA polymerase binding, whereas the all-β state operates as an activator of translation by interacting with the ribosomal protein S10 and recruits ribosomal mRNA. Accordingly, this drastic conformational change enables RfaH to physically couple the transcription and translation processes in gene expression. To understand the mechanism behind this extraordinary functionally relevant structural transition, we constructed Markov state models using an adaptive seeding method. The constructed models highlight several parallel folding pathways with heterogeneous molecular mechanisms, which reveal the folding kinetics and atomic details of the conformational transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.