Abstract

The thermal boundary conductance between water and self-assembled monolayer was studied using nonequilibrium molecular dynamics simulations. Different thermal transport behaviors were observed for hydrophobic and hydrophilic self-assembled monolayers. In the temperature range between 280 and 340 K, the thermal boundary conductance was found to depend on the temperature for hydrophobic self-assembled monolayers. On the contrary, the difference in thermal boundary conductance at different temperatures was slight for hydrophilic self-assembled monolayers. The correlations in velocity and density between terminal atoms of self-assembled monolayer and water molecules within the interface region were analyzed to understand the mechanism of thermal transport across the interface. The vibrational density of states calculation indicated that the temperature dependence does not originate from the overlap of phonon spectrum. The analysis of radial density distribution revealed that the temperature dependence is main...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.