Abstract
The same amount of metal was deposited on the surface of three-dimensional mesoporous MCM-48 by a facile impregnation-calcination method for catalytic ozonation of pharmaceutical and personal-care products in the liquid phase. At 120 min reaction time, Co/MCM-48 and Ce/MCM-48 showed 46.6 and 63.8% mineralization for clofibric acid (CA) degradation, respectively. Less than 33% mineralization was achieved with Co/MCM-48 and Ce/MCM-48 during sulfamethazine (SMZ) ozonation. In the presence of monometallic oxides modified MCM-48 catalysts, total organic carbon (TOC) removal of diclofenac sodium (DCF) was around 80%. The composite Co-Ce/MCM-48 catalyst exhibited significantly higher activity in terms of TOC removal of CA (83.6%), SMZ (51.7%) and DCF (86.8%). Co-Ce/MCM-48 inhibited efficiently the accumulation of small molecular carboxyl acids during ozonation. A detailed research was conducted to detect the nature of material structure and mechanism of catalytic ozonation by using a series of characterizations. The main reaction pathway of CA was determined by the analysis of liquid chromatography-mass spectrometry, in line with the results of frontier electron density calculations that reactive oxygen species (ROSs) were easy to attack negative regions of pharmaceuticals. The Si-O-Si, Co···HO-Si-O-Si-OH···Ce, and O3···Co-HO-Si-O-Si-OH···Ce-OH···O3 basic units in catalysts were constructed to detect the orbit-energy-level difference. The results revealed that a synergistic effect existed at the interface between cobalt and cerium oxides over MCM-48, which facilitated the ROSs sequence in solution with ozone. Therefore, the multivalence redox coupling of Ce4+/Ce3+ and Co3+/Co2+ along with electron transfer played an important role in catalytic ozonation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.