Abstract

Hydrogen-rich syngas from supercritical water gasification (SCWG) of renewable biomass is a promising technology. However, due to the complexity of the biomass structure, there is limited research on the liquid and solid products generated by SCWG of real biomass, and the related hydrolysis and gasification mechanisms are not yet clear. In this study, SCWG experiments were carried out on corn stover through a batch reactor, and the products were analyzed by gas-phase GC, liquid-phase GC-MS, UV spectroscopy, ultimate analysis, FTIR, PY-GC/MS, BET specific surface area, and SEM. The mechanism of corn stover SCWG was revealed by qualitative and quantitative analyses of gas products, the composition of liquid products, and the functional groups, carbon skeleton, surface morphology and specific surface area of solid products. The results showed that the aliphatic groups were hydrolyzed and gasified first at 400–500 °C. When the temperature rose to 600 °C, the aromatic groups were also gradually hydrolyzed and gasified, and the remaining aromatic groups underwent condensation and dehydrogenation to produce large molecular naphthalene, phenanthrene, pyrene, etc. The optimal biomass concentration was between 10.5 and 1 g/100 g water during the corn stover SCWG, and the reaction was completed in 15 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.