Abstract

We present a numerical study on necessary conditions for the appearance of infinite avalanche below the critical point in disordered systems that evolve throughout metastable states. The representative of those systems is the nonequilibrium athermal random-field Ising model. We investigate the impact on propagation of infinite avalanche of both the interface of flipped spins at the avalanche's starting point and the number of independent islands of flipped spins in the system at the moment when the avalanche starts. To deduce what effects are originated due to finite system's size, and to distinguish them from the real necessary conditions for the appearance of the infinite avalanche, we examined lattices of different sizes as well as other key parameters for the avalanche propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call