Abstract
The trigger for the nonlinear destabilization of the double tearing mode (DTM), referred to as a structure-driven instability leading to explosive growth and subsequent collapse, is investigated. We use the reduced MHD equations that solve the evolution of perturbations from an equilibrium deformed by two-dimensional magnetic islands during the slow evolution of the quasi-steady nonlinear regime. By examining conditions near marginal stability (under which the explosive growth is not triggered), we have identified a new secondary instability that starts growing when the magnetic energy of the primary fluctuations associated with the islands reaches a critical level. The energy source of this instability is different from that of the linear DTM; it originates in the spatial deformation due to the DTM-driven magnetic islands and is responsible for the subsequent nonlinear destabilization. The growth rate of this secondary instability is found to be proportional to the magnetic energy, suggesting that it exhibits modulational characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.