Abstract

Structure evolution during deformation of unfilled natural rubber (NR) vulcanizate and filled ones with carbon black or calcium carbonate was investigated by the synchrotron x-ray diffraction. The crystallization onset strain, α0, was found to decrease by the inclusion of the filler. However, corrected α0 values into the effective strain ratio of deformable rubber portion were almost constant between filled and unfilled samples. Accordingly, our model of strain-induced crystallization of unfilled NR vulcanizates, assuming that melting temperature is independent of network-chain length (n), was applied to the filled samples. The discrepancy between classical theories and experimental results was thought to come from the distribution of n. By the inclusion of filler, the lateral crystallite size was decreased but the orientational fluctuation increased. The lattice of the strain-induced crystallites changed almost linearly with the nominal stress. In addition, the degree of lattice deformation decreased with the filler content, especially in the carbon black-filled system. All these experimental results are consistent with the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.