Abstract

Intracerebral hemorrhage (ICH) is classified as a subtype of stroke and calcium (Ca2+) overload is a catalyst for ICH. This study explored the mechanisms of Stat1 (signal transducer and activator of transcription 1) in the neuronal Ca2+ overload after ICH. ICH mouse models and in vitro cell models were established. Stat1 and transient receptor potential melastatin 7 (Trpm7) were detected upregulated in ICH models. Afterward, the mice were infected with the lentivirus containing sh-Stat1, and HT22 cells were treated with si-Stat1 and the lentivirus containing pcDNA3.1-Trpm7. The neurological functional impairment, histopathological damage, and Nissl bodies in mice were all measured. HT22 cell viability and apoptosis were identified. The levels of Ca2+, Trpm7 mRNA, H3K27 acetylation (H3K27ac), CaMKII-α, and p-Stat1 protein in the tissues and cells were determined. We found that silencing Stat1 alleviated ICH damage and repressed the neuronal Ca2+ overload after ICH. H3K27ac enrichment in the Trpm7 promoter region was examined and we found that p-Stat1 accelerated Trpm7 transcription via promoting H3K27ac in the Trpm7 promoter region. Besides, Trpm7 overexpression increased Ca2+ overload and aggravated ICH. Overall, p-Stat1 promoted Trpm7 transcription and further aggravated the Ca2+ overload after ICH.NEW & NOTEWORTHY We found Stat1 promotes Trpm7 transcription by promoting H3K27 acetylation and thus promotes calcium overload of neurons after intracerebral hemorrhage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.