Abstract

AbstractThis paper examined the mechanism of both positive and negative effects of Soret‐Dufour with heat and mass transfer processes over an accelerating permeable surface. The partial differential flow equations were simplified using similarity variables, and the resulting equations were solved numerically using the spectral homotopy analysis method (SHAM). The SHAM is used in separating nonlinear equations into linear and nonlinear. The physics of each pertinent flow parameters was used to examine their influence on velocity, temperature, and concentration fields. The effect of Soret‐Dufour was examined separately, and its negative effect was used to determine its influence on velocity, temperature, and concentration fields. The result revealed that positive Soret‐Dufour enhances the boundary layer, whereas negative Soret‐Dufour parameter decreases the boundary layer. The result presented in this paper is in good agreement with existing works in literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call