Abstract

Hydrogen sulfide (H2S) can exert different effects on the gastrointestinal tract by modulating ion channels. Previously, we found that H2S donor sodium hydrosulfide (NaHS) regulates colonic motility through L-type calcium channels, but the molecular mechanism remains unknown. The present study was designed to investigate possible mechanisms underlying the modulation of L-type calcium channels by NaHS in rat colonic smooth muscle cells. L-type calcium currents in colonic smooth muscle cells were recorded using the whole-cell patch-clamp technique. Spontaneous contractions of mid-colonic smooth muscle strips were measured in an organ bath system and a biological signal acquisition system. NaHS evoked a significant rightward shift in the steady-state activation curve of L-type calcium channels, changed the shape of the current-voltage (I-V) curve, and decreased the peak current density at 0mV, although it significantly increased with higher stimulatory voltage. The sulfhydryl-modifying reagent DL-dithiothreitol (DTT) enhanced the effects of NaHS on L-type calcium channels, while diamide (DM) and reduced L-glutathione (GSH) alleviated the effects of NaHS. Additionally, NaHS inhibited the spontaneous high-amplitude contractions of both longitudinal and circular smooth muscle strips in a dose-dependent manner. The inhibitory effects were reversible. DTT and GSH enhanced the effects of NaHS, while DM attenuated the effects of NaHS. In conclusion, NaHS modulates L-type calcium channels in rat colonic smooth muscle cells and regulates the contractile activity of colonic smooth muscle, potentially by modifying the free sulfhydryl groups of L-type calcium channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call