Abstract
The deformation behavior of propylene–ethylene copolymers with 23 mol % of ethylene (iPPcoE23) and its blend (90/10 w/w) (iPPcoE23b) with propylene–ethylene copolymer (6 mol % ethylene) (iPPcoE6) at room temperature was studied by in situ small-angle X-ray scattering and wide-angle X-ray diffraction techniques. The 10 wt % copolymer with 6 mol % ethylene counits dispersed as small domains in the matrix of iPPcoE23. During stretching, longer and thinner fibrils and better elasticity properties were shown in the blend iPPcoE23b at large strain regime. The higher elasticity for iPPcoE23b at large strain regime was ascribed to the weak ability of strain-induced crystallization due to cocrystallization of the crystallizable long chain sequences of iPPcoE23 with the high crystalline iPPcoE6 during cooling, leaving fewer long crystallizable sequences in the matrix in iPPcoE23b. In addition, the phase-separated domains contributed stronger network modulus in the late stage of stretching compared with that of the ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.