Abstract

Ethnopharmacological relevanceShenfu injection(SFI), as a famous classical Chinese patent medicine injection for the treatment of sepsis, has achieved good curative effects in clinical practice. However, its specific ingredients and molecular mechanisms is still unclear. Aim of the studyTo analyze the effective ingredients and molecular mechanisms of SFI in the treatment of sepsis via network pharmacology technology and experimental validation. Materials and methodsA total of 198 mice were used in this experiment. Septic mice model was performed by cecal ligation and puncture (CLP). First, Survival rates were calculted to screen the dosage and the treatment time window of SFI. Cardiac function was evaluated by echocardiography. The potential targets and pathways of SFI in the treatment of sepsis were predicted by network pharmacology. Myocardial tissue samples were harvest from different groups after CLP surgery. Hematoxylin-eosin (H&E) and TUNEL staining were used to examine the injury of heart. Western-blot analysis was performed to determine the protein expression of apoptosis. Meanwhile, the structural changes and mitochondrial membrane potential in the mitochondria of cardiomyocytes were also observed by transmission electron microscopy. ResultsThe Kaplan-Meier survival analysis showed that SFI significantly improved the 7-day survival rate as compared with that of CLP mice (P < 0.05). Echocardiography analysis found that LVEF and FS were significantly reduced in CLP mice compared with Sham mice, while SFI significantly increased LVEF (P < 001). Network pharmacology analysis indicated that the potential targets with higher degrees include IL2, BCL2, BAX, CASP7, BID, CASP8. Pathways with higher degrees include apoptosis, TNF signaling pathway, mitochondrial pathway apoptosis, PI3K-AKT signaling pathway. SFI treatment markedly attenuated the quantity of apoptotic cells as compared with the CLP group (P < 0.01). Western blot analysis indicated that CLP surgery decreased the expression of Bcl-2 (anti-apoptotic) but improved the protein expression of Bid, t-Bid, Cyc (pro-apoptotic) as compared with the Sham group (P < 0.01). While, SFI treatment markedly prevent the expression of Bid, t-Bid, Cyc and Caspase-9. The myocardial mitochondrial membrane potential of CLP group decreased after CLP surgery, while the mitochondrial membrane potential of SFI group increased significantly. Compared with the CLP group, in SFI group, the Z-line of the sarcomere was clear and distinguishable, and swollen mitochondria were significantly improved. ConclusionsThe present study demonstrated that SFI improved survival rate and cardiac function of septic mice mainly by suppressing inflammation and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call