Abstract

The mechanism of selective oxidation of aliphatic C–H groups with H2O2 in the presence of aminopyridine Mn complexes, modeling the reactivities of natural oxygenases of the cytochrome P450 superfamily, has been examined. The oxygenation of C–H groups proceeds via hydrogen atom abstraction by the electrophilic metal site; the logarithm of C–H oxidation rates correlates linearly with bond dissociation energies for homolytic C–H bond cleavage. Hammett correlations and stereospecificity studies reflect the formation of a short-lived electron-deficient radical intermediate. Isotopic labeling studies confirm the incorporation of 18O from added H218O, thus providing so far lacking evidence for the oxomanganese(V)-mediated oxidation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.