Abstract

Safener mefenpyr-diethyl (MFD) was applied to cereal crops along with herbicides to improve herbicide selectivity for crops and weeds. However, the degradation mechanism of MFD in the environment remains unclear. One MFD-degrading bacterium, Chryseobacterium sp. B6, was isolated from activated sludge. According to Box-Behnken's optimal design, the degradation efficiency of MFD can reach 92% under conditions of pH 7.5, 30 °C, and a MFD concentration of 184 mg L−1. The degradation half-life experiment showed that a high concentration of MFD (300 mg L−1) inhibited the degradation ability of strain B6. Additionally, strain B6 was resistant to Ba2+, Cr3+, Li+, Zn2+, and Cu2+. The MFD degradation products of strain B6 were detected by GC/MS and its degradation pathway was proposed. MFD was first hydrolyzed by a hydrolase to an intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester-3-carboxylic acid, and then further degraded by a decarboxylase to form the intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester, finally, it is completely degraded by strain B6. Furthermore, strain B6 could effectively remove MFD from MFD-contaminated soil, and the half-life of MFD was also significantly reduced in MFD and Cu2+ co-contaminated soil after inoculating strain B6. To our knowledge, strain B6 was the first strain reported to degrade safener MFD, and this study provides a valuable candidate to remediate the co-contaminated soil with MFD and Cu2+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call